Estimates on singular values of functions of perturbed operators
نویسندگان
چکیده
منابع مشابه
Singular values of convex functions of matrices
Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$ are nonzero matrices and each $X_{i}$ is positive semidefinite. It is shown that if $f$ is a nonnegative increasing convex function on $left[ 0,infty right) $ satisfying $fleft( 0right) =0 $, then $$2s_{j}left( fleft( fra...
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
Lipschitz Functions of Perturbed Operators
We prove that if f is a Lipschitz function on R, A and B are self-adjoint operators such that rank(A − B) = 1, then f(A) − f(B) belongs to the weak space S1,∞, i.e., sj(A − B) ≤ const(1 + j). We deduce from this result that if A − B belongs to the trace class S1 and f is Lipschitz, then f(A) − f(B) ∈ SΩ, i.e., Pn j=0 sj(f(A) − f(B)) ≤ const log(2 + n). We also obtain more general results about ...
متن کاملEstimates on Green functions of second order differential operators with singular coefficients
We investigate the Green’s functions G(x;x′) of some second order differential operators on R with singular coefficients depending only on one coordinate x0. We express the Green’s functions by means of the Brownian motion. Applying probabilistic methods we prove that when x = (0,x) and x′ = (0, x′) (here x0 = 0) lie on the singular hyperplanes then G(0,x; 0, x′) is more regular than the Green’...
متن کاملFunctions of Perturbed Noncommuting Self-adjoint Operators
Abstract. We consider functions f(A,B) of noncommuting self-adjoint operators A and B that can be defined in terms of double operator integrals. We prove that if f belongs to the Besov class B ∞,1 (R), then we have the following Lipschitz type estimate in the trace norm: ‖f(A1, B1)− f(A2, B2)‖S1 ≤ const(‖A1 −A2‖S1 + ‖B1 −B2‖S1). However, the condition f ∈ B ∞,1 (R) does not imply the Lipschitz ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operators and Matrices
سال: 2018
ISSN: 1846-3886
DOI: 10.7153/oam-2018-12-06